Chemical Storage and Handling Recommendations

Improper storage of laboratory chemicals can present a potential safety hazard for school science departments. One solution is to separate chemicals into their organic and inorganic families and then to further divide the chemicals into related and compatible families¹. Table 1 and Table 2 (below) demonstrate compatible family groupings. Chemicals organized for compatible storage markedly increase safety for students and school employees.

Handling school chemicals safely is completely at the risk and entirely the responsibility of the school officials. It is always a good practice to consult its SDS² when handling any chemical.

Inorganic #10 (I10)	Inorganic #7 (I7)
Sulfur, Phosphorus, Arsenic, Peroxide	Arsenates, Cyanides, Cyanates (Store away from any water)
Inorganic #2 (I2)	Inorganic #5 (I5)
Acetates, Halides, Halogens, Oxalates, Oleates, Phthalates, Phosphates, Sulfates, Sulfites, Thiosulfates	Sulfides, Selenides, Phosphides, Carbides, Nitrides
Inorganic #3 (I3)	Inorganic #8 (I8)
Amides, Nitrates (except Ammonium Nitrate), Nitrites, Azides (Isolate Ammonium Nitrate and store away from all other substances)	Borates, Chromates, Manganates, Permanganates, Molybdates, Vanadates
Inorganic #1 (I1)	Inorganic #6 (I6)
Metals, Hydrides (Store away from any water) (Store flammable solids in flammables cabinet)	Bromates, Chlorates, Chlorites, Iodates, Peroxides, Hydrogen Peroxide, Hypochlorites, Perchlorates, Perchloric Acid
Inorganic #4(I4)	Miscellaneous (IM)
Hydroxides, Oxides, Silicates, Carbonates, Carbon	Inorganic Miscellaneous

Table 1. Flinn Suggested Compatible Family Codes and Shelf Storage Pattern - Inorganic (I)³

Inorganic #9 (I9)

Acids, Except Nitric Acid (Nitric Acid is isolated and stored by itself) (Acids are best stored in a dedicated and locked cabinet)

Organic #2 (O2) Alcohols, Glycols, Sugars, Amines, Amides, Imines, Imides (Stored flammables in a dedicated cabinets)	Organic #8 (O8) Phenols, Cresols
Organic #3 (O3) Hydrocarbons, Esters, Aldehydes, Oils (Store flammables in a dedicated cabinet)	Organic #6 (O6) Peroxides, Hydroperoxides, Azides
Organic #4 (O4) Ethers, Ketones, Ketenes, ethylene Oxide, Halogenated Hydrocarbons (Stored flammables in a dedicated cabinet)	Organic #1 (O1) Acids, Amino Acids, Anhydrides, Peracids (Store certain organic acids in acid cabinet)
Organic #5 (O5) Epoxy Compounds, Isocyanates	Organic #9 (O9) Dyes, Stains, Indicators (Store alcohol-based solutions in flammables cabinet)
Organic #7 (O7) Sulfide, Polysulfides, etc.	Miscellaneous (OM) Organic Miscellaneous

Table 2. Flinn Suggested Compatible Family Codes and Shelf Storage Pattern - Organic (O)⁴

Organic #2 (Alcohols, Glycols etc.); Organic #3 (Hydrocarbons, etc.) Organic #4 (Ethers, Ketones, etc.); Organic #9 (Alcohol-based Indicators, etc.) Should be stored in a flammables cabinet

Potential Risks for Storage or Mixing of Incompatible Chemicals

When certain chemicals are stored or mixed together, violent reactions may occur because the chemicals are unsuitable for mixing or are incompatible. No single method of determining chemical compatibility is perfect. The reasons are varied, however the main cause is that many chemicals belong to more than one hazard class. This can lead to confusion as to which class is appropriate for the chemical in question. The hazard class can change depending on factors such as quantity of chemicals and other chemicals in the storage area. Not all chemicals in a given class are compatible. For example: sodium dichloroisocyanurate and calcium hyperchlorite are both oxidizers, yet the mixing of these two chemicals can lead to the formation of nitrogen trichloride, a shock sensitive explosive. The sheer number of exceptions to any classification scheme prevents listing all of them in a convenient reference table.

The mixing of incompatible chemicals in a waste container can form an explosive mixture. If a bottle breaks in a waste storage area where incompatibles are/were present, the results could be disastrous. Remember, incompatible bottles of waste chemicals should be stored separately. The objective is to avoid accidents in the laboratory.

The chemicals listed in Table 3, Table 4, and Table 5 are <u>not intended to be all inclusive</u> and should not be considered complete. They include only the most common incompatible combinations. The absence of a chemical from this list should not be taken to indicate that it is safe to mix it with any other chemicals! (consult a chemical's SDS for additional guidance).

The chemicals listed in the following table react violently when they come into contact with each other and must not be stored together.

Chemicals	Incompatible with
Acetic acids	Chromium oxide, nitric acid, perchloric acid, peroxides, permanganates, alcohol, ethylene glycol
Acetic anhydride	Hydroxyl-containing compounds e.g. ethylene glycol, perchloric acid
Acetone	Concentrated nitric acid and sulfuric acid mixtures, hydrogen peroxide

 Table 3. Common Incompatible Chemical Combinations⁵

Acetylene	Chlorine, bromine, fluorine, copper, silver
Activated carbon	Calcium hypochlorite, oxidizing agents
Alkali metals	Water, carbon tetrachloride and other halogenated alkanes, carbon dioxide, halogens. (Do not use water or foam extinguishers for fires involving these metals use the appropriate Class D extinguisher.
Aluminum	All oxidizing agents, acids, alkalis, halogenated hydrocarbons, peroxides
Aluminum alkyls	Water
Ammonia, liquid or gas	Chlorine, calcium hypochlorite, iodine, bromine, hydrogen fluoride
Ammonium nitrate	Acids, powdered metals, flammable liquids, chlorates, nitrates, sulfur, fine-particulate organic or combustible materials
Aniline	Nitric acid, hydrogen peroxide
Arsenic materials	Any reducing agent
Azides	Acids
Bromine	See Chlorine
Calcium carbide ⁶	Water, ethanol
Calcium oxide	Water
Carbon activated	Calcium hypochlorite, other oxidants
Carbon tetrachloride ⁷	Sodium
Chlorates	Ammonium salts, acids, powdered metals, sulfur, fine-particulate organic or combustible substances
Chlorine	Ammonia, acetylene, butadiene, butane, methane, propane, hydrogen, petroleum benzine, benzene, powdered metals
Chlorine dioxide ⁷	Ammonium, methane, phosphine, hydrogen sulfide
Chromium (V1) oxide, Chromic acid	Acetic acid, naphthalene, camphor, glycerol, petroleum benzine, alcohols, flammable liquids
Copper	Acetylene, hydrogen peroxide

Cumene Hydroperoxides	Acids, both organic and inorganic
Cyanides	Acids
Flammable liquids	Ammonium nitrate, chromium (VI) oxide, hydrogen peroxide, nitric acid, sodium peroxide, halogens, chromic acid.
Fluorine	Extremely aggressive; store separately! Isolate from everything!
Hydrazine	Hydrogen peroxide, nitric acid, any other oxidant
Hydrocarbons, butane, propane, benzene etc.	Fluorine, chlorine, bromine, chromium (VI) oxide, sodium peroxide
Hydrocyanic acid ⁷	Nitric acid, alkali
Hydrogen fluoride (hydrofluoric acid)	Ammonia (laboratory gas or solutions)
Hydrogen peroxide	Copper, chromium, iron, metals and metal salts, alcohols, acetone, organic substances, aniline, nitromethane, combustible substances (solid or liquid)
Hydrogen sulphide	Fuming nitric acid, oxidizing gases
Hypochlorites	Acids, activated carbon
lodine	Acetylene, ammonia (laboratory gas or solutions)
Mercuric oxide ⁶	Sulfur
Nitrates and nitrites	Acids
Nitric acid	Acetic acid, aniline, chromium (VI) oxide, prussic acid, hydrogen sulfide, flammable liquids and gases
Nitrites ⁷	Acids
Nitroparaffins	Inorganic bases, amines
Oxalic acid	Silver, mercury salts
Oxygen ⁷	Oils, grease, hydrogen; flammable liquids, solids, or gases
Perchloric acid	Acetic anhydride, bismuth and its alloys, alcohols, paper, wood, grease. oil, (all organics)

Peroxides, organic	Acids (organic and inorganic), avoid friction, store cold
Phosphorus	Sulfur, compounds containing oxygen, e.g. chlorates, air, oxygen
Phosphorus (white) ^{6,7}	Air, oxygen, alkalis, reducing agents, carbon tetrachloride, carbon dioxide, water, alcohols, acids
Phosphorus pentoxide	Alcohols, strong bases, water
Potassium	Air, oxygen, reducing agents, Carbon tetrachloride, carbon dioxide, water, alcohols, acids
Potassium chlorates	See Chlorates
Potassium perchlorate	See Chlorates
Potassium permanganate	Glycerol, ethylene glycol, benzaldehyde, sulfuric acid
Selenides ⁷	Reducing agents
Silver	Acetylene, oxalic acid tartaric acid, ammonium compounds
Sodium	See Alkali metals
Sodium Nitrate ⁶	Ammonium salts
Sodium Nitrite ⁷	Ammonium nitrate and other ammonium salts
Sodium peroxide	Methanol, ethanol, glacial acetic acid, acetic anhydride, benzaldehyde, carbon disulfide, glycerol, ethylene glycol, ethyl acetate, methyl acetate, furfural
Sulfides (sulphides)	Acids
Sulfuric acid	Potassium chlorate, potassium perchlorate, potassium permanganate (or compounds with similar light metals, such as sodium, lithium)
Sulphur	Metals, all oxidizing agents
Tellurides ⁷	Reducing agents
Zinc	All oxidizing agents, acids, alkalis, halogenated hydrocarbons, peroxides

Chemicals Stored Together	Possible Reaction
Acetic acid & acetaldehyde	Small amounts of acetic acid will cause the acetaldehyde to polymerize, releasing heat
Acetic anhydride & acetaldehyde	Reaction can be violently explosive
Aluminum metal & ammonium nitrate	A potential explosive
Aluminum & bromine vapor	Aluminum foil reacts with bromine vapor at room temperature and combusts
Ammonia vapor & bromine vapor	Unstable nitrogen tribromide is formed, explosion may result
Ammonium nitrate & acetic acid	A mixture may result in ignition, especially if acetic acid is concentrated
Cupric sulfide & cadmium chlorate	Will explode on contact
Hydrogen peroxide & ferrous sulfide	Forms a vigorous, highly exothermic reaction
Hydrogen peroxide & lead II or IV oxide	Violent, possibly explosive reaction
Lead perchlorate & methyl alcohol	Forms an explosive mixture if agitated
Lead sulfide & hydrogen peroxide	Vigorous, potentially explosive reaction
Mercury II nitrate & methanol	May form mercury fulminate - an explosive
Nitric acid & phosphorus	Phosphorus burns spontaneously in the presence of nitric acid
Potassium cyanide & potassium peroxide	A potentially-explosive mixture if heated
Sodium nitrate & sodium thiosulfate	A mixture of the dry materials can result in an explosion

Table 4. Possible Reactions That May Occur Due to Improper Storage of Incompatible Chemicals⁵

Acetone + Chloroform in the presence of base Acetylene + Copper, Silver, Mercury salts Carbon Disulfide + Sodium Azide
Carbon Disulfide + Sodium Azide
Carbon Disuinde + Souldin Azide
Chlorine + an Alcohol
Chloroform or Carbon Tetrachloride + Powdered Aluminum or Magnesium
Decolorizing Carbon + an Oxidizing Agent
Diethyl Ether + Chlorine (including a chlorine atmosphere)
Dimethyl Sulfoxide + Chromium Trioxide
Ethanol + Calcium Hypochlorite
Ethanol + Silver Nitrate
Nitric Acid + Acetic Anhydride or Acetic Acid
Picric Acid + a heavy metal salt such as Lead, Mercury, or Silver Oxide + Ammonia + Ethanol
Sodium + a Chlorinated Hydrocarbon
Sodium Hypochlorite + an Amine

Federal Regulations on lodine⁸

Drug Enforcement Administration (DEA); 21 CFR Parts 1309 and 1310 (Rules - 2007)

This rulemaking establishes regulatory controls that will apply to iodine crystals and iodine chemical mixtures that contain greater than 2.2 percent iodine. Persons handling regulated iodine materials are required to register with DEA, are subject to the import/export notification requirements of the Controlled Substances Act (CSA), and are required to maintain records of all regulated transactions involving iodine regardless of size.

Crystal lodine is commonly found in chemical storage rooms of high schools. Make sure you know that it is federally regulated.

Reference:

- 1. Flinn's "Scientific Catalog Reference Manual", 2012 and its Safety Data Sheet (SDS) on Line: http://www.flinnsci.com/msds-search.aspx
- 2. SDS: Safety Data Sheet
- 3. Flinn Inorganic Compatible Family Codes (I1 to I10 and IM); Flinn's "Scientific Catalog Reference Manual", 2012, p1167
- 4. Flinn Organic Compatible Family Codes (O1 to O9 and OM); Flinn's "Scientific Catalog Reference Manual", 2012, p1167
- 5. Analytical Chemistry Resources; http://delloyd.50megs.com/moreinfo/storage.html
- 6. University of Notre Dame, Risk Management and Safety Website: http://riskmanagement.nd.edu/.../incompatible_chemicals.pdf%22%3Eincompa..
- 7. University of New Hampshire website: http://www.unh.edu/.../Chemical%20Inco...Univ; (Manufacturing Chemist's Association, Guide for Safety in the

Chemical Laboratory, pp. 215-217)

8. U.S. Department of Justice, Drug Enforcement Administration on Line: http://www.deadiversion.usdoj.gov/fed_regs/rules/2007/fr0702.htm